
 Prover  (P) statement Proof Verifier  (V) Proof properties 
  

Proof 
 

 
Proof of Knowledge  (PoK) 

 

proves that a statement is true; this 
happens thanks to these (already 
encountered) properties: 

 

proves that the Prover knows something, so it’s a proof whose statement is: “the prover has knowledge of …”. 
Asserting that the Prover knows something means it could output an evidence, a Witness W about it, even if 
it’s not expected during normal operations; that’s why we also need a new special entity called extractor: 
 

 

 Perfect Completeness 
 

 (remember, we can always make it Perfect) 
 

 Soundness 
 

 

Perfect Completeness  (sometimes called Non-triviality in this context) 
 

existence of a Knowledge Extractor (KE) (sometimes called Validity) 
 

 
 

 

• V is also called Knowledge Verifier 

• Don’t be confused by term “knowledge”: PoK could be non-ZK (in fact we haven’t listed ZKness): trivially, a Prover sending its Witness to the Verifier 

• When dealing with ZKPoK, the Knowledge Extractor doesn’t break Zero Knowledge in the same way a Simulator doesn’t break Soundness: KE 
obtains W from P using capabilities not available during normal proof execution: it has black-box oracle access to P (e.g. it can rewind it) 

• err is the Knowledge Extractor Error, in the form of a threshold in KE definition below which it cannot extract W 

• Soundness isn’t explicitly stated among properties because it’s implied by KE existence, so it’s also called Knowledge (or Special) Soundness: 

 

 KE extract W    statement is TRUE                                          
         (because W is an evidence of the statement)  
 
 

so if  err = 0  we get perfect soundness , and  err < 1/2  leads to IP’s statistical soundness ; when  err  1/2  we are in the quite common case in which a 
satisfying PoK is obtained by n sequential repetitions of the original one: the resulting protocol will have KE Error = err n , permitting again statistical 
soundness for a large enough n (the Ali Baba Cave is an ELI5 example of this kind of proof by successful repetitions of a base one with too big error)  
 

 

Argument  (ARG) Argument of Knowledge  (ARK) 

 

A proof with computational soundness, hence a relaxed soundness required to hold 
in a computationally-bounded context, where all involved entities are bounded: so 
ANY adversary P* and prescribed P as well (which is not generally required for proofs, 
even if it’s implicit every time we consider a real-world implementation). 
 

 

A proof of knowledge with computational soundness, maybe 
derived from a computational Knowledge Extractor, e.g.: 
 

DLP is hard  computational KE  computational Soundness 
 

(given that logical implication is transitive, reduction is as well; DLP again just an example) 
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Theorem is TRUE    V is convinced 

 
Completeness: 

Theorem is TRUE        V is definitely convinced: 

                                               P [V is convinced]  1 
Soundness: 

Theorem is FALSE       V cannot be convinced: 

                                               P [V is convinced]  0 
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Completeness: 

Statement is TRUE        P [V is convinced] > 1/2 
  
Soundness: 

Statement is FALSE       P [V is convinced] < 1/2 

 
pushing thresholds (see notes below) properties 

become statistical (vs. legacy perfect ones) 
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Interactive Proofs (IP) can be seen as a generalization of legacy ones, where the static nature of the latter is replaced by an active role of both the 
Prover and the Verifier, which send messages each other and also generate random values to be used in the proof. The 1/2 likelihood threshold could 
be regarded as “too weak”, however probability can be increased in completeness -and reduced in soundness- as wished, repeating the IP many times 
and deciding by majority if V is convinced or not; this strategy can be justified with various degrees of math rigor and/or layman reasoning: 
 

• analytical proof: using Chebyshev’s inequality or Chernoff bound 
• numerical check: calculating probabilities with various threshold values and numbers of repetitions 

• by intuition: it seems reasonable that majority occurrence of an adversely-biased event is so much improbable as repetitions raise (so 
complementary favorably-biased event's probability increases) 

 

More: it can be proved that, given an IP for a statement, for the same statement we can get an IP with perfect completeness P [V is convinced]  1 
and with V sending messages which contain only the random values it generates: the so called Arthur-Merlin (AM) -aka public-coin- proof systems 
 

 

 

from IP to ZKP:    Zero-Knowledgeness property via Simulation paradigm 
 

a taste of  Non-Interactive Zero-Knowledge  (NIZK) 

 

Exchange of messages between P and V seems unavoidable: given that S can produce a fake transcript, we cannot trust an exhibited-only transcript as 
really coming from an execution of the protocol: a ZKP is non-transferable to third-parties (not taking part in the proof) and so it's deniable to them. 
Still 1 round “exchanges” (just P making a proof available for a later check by V) are of huge practical interest because they don’t require parties to be 
online at the same time; to make them possible the common standard/plain model (considered till now) is augmented by further assumptions: 
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The enabling factor here is the existence of Common Reference(/Random) String drawn from some(/uniform) probability distribution and known 
by both P and V. Original inefficiencies of this approach have been partially solved by the quite recent pairing-based cryptography, however the 
common string is just assumed as available, needing a de-facto unspecified trusted-setup protocol producing it before NIZK proof execution  
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This strategy applies to Sigma () protocols, which are public-coin proofs with 3-stages structure: a P’s random commitment followed by a V's 
random challenge (this part of the exchange can be repeated multiple times), and a final P's response. The trick is to substitute V's challenge with 
a Random Oracle (RO) output, available to both P and V: 
 A RO is an IDEAL function returning a random uniformly-distributed 
 output (but always the same) for a given input. In FS, input includes all 

 transcript’s messages up to RO call, because miming the  protocol 
 requires the challenge to PROVABLY (to V’s benefit) come after its 
 commitment: just a P’s random toss wouldn’t be enough. Soundness  
 for FS also requires all public data into input, e.g. proof’s statement. 
 

The aim is to derive non-interactive proof’s properties from their  protocol’s counterparts. 
Completeness follows trivially and Soundness can also be derived. Note: FS always results in 
an Argument, because unbounded P* could “overcome” RO thanks to unlimited queries; and 

anyway:  Soundness threshold must be lowered to balance FS P* precomputing advantage.  
 

ZKness: being its output random, RO acts like a public-coin Honest Verifier: if original proof 
is HVZK, its simulator can be employed to also forge a transcript for NIZK. Simulations often 
play with messages out of order, so the extra power to “program” RO’s outputs as wished 
(preserving uniformity to respect the prescribed distribution) is granted to S, to reverse the 
challenge’s dependency on commitment. The same idea applies to Knowledge Extractability.  
 
 

 

 

A Zero-Knowledge Proof (ZKP) is an IP holding one additional property: Zero-Knowledgeness. Roughly speaking, it states that verifier V learns nothing from 
the proof apart from the statement being true. Intuitively only the messages exchange with prover P can be the intermediary of this learning (if any), so a way 
to formalize ZKness is to show the existence of an entity - called simulator S - whose ONLY capability is to produce, together with V, a transcript of messages 
exchange indistinguishable from the original one: if the transcripts are indistinguishable, the learnings will be as well… but nothing can be learnt from a transcript 
produced by S because it has no capabilities apart from merely producing that transcript, so the same (= nothing) can be learnt from the IP.  
Given that transcripts are random variables characterized by distributions (due to parties’ capability to “toss dice”), we have 3 indistinguishability flavors: 
 

 

Perfect Zero-Knowledge (PZK) 

                             
fail               S               valid output 

 
A sometimes failing S is invoked -at most n times- 
up to a valid output, whose distribution has to be 
EQUAL to original IP transcript distribution (so the 
upper bound of overall S n failing ratio can be 
lowered as wished by increasing n) 

 

 

Statistical Zero-Knowledge (SZK) 
 

• No transcript instance ts can 
appear with too much different 
probabilities in original IP and S, 

• if many transcript probabilities 
differ between original IP and S, 
differences must be tiny: 
 

  ts | P
 
[IP → ts] – P

 
[S → ts] |  is “small” 

 

Computational Zero-Knowledge (CZK) 
 

Transcripts distributions are practically indistinguishable when 
compared by ANY computationally-bounded entity. 
 

Capturing explicitly the observing entity “class” in a proof isn't 
a simple task, so often a reduction to a widely accepted 
computationally-hard problem is used (because hardness is 
assumed when ALL entities are computationally-bounded): 
 

DLP is hard  CZK  or equivalently:  not CZK  DLP is broken 
 

(where DLP is the Discrete Logarithm Problem, and this is just an example) 

 

To avoid breaking IP soundness (the simulator can produce a valid transcript, so it could impersonate a cheating prover claiming a false statement), S has and 
uses some power not available during a normal IP execution, e.g. rewinding of the verifier: imagine V having reached a certain point in the interaction, being 
wound back and resuming from a previous point. This is possible because S has black-box oracle access to V, basically meaning that it can call V’s “next message” 
subroutine whenever it needs. (All of this can also be seen as V alone being the author of the simulation, leveraging full availability of its resources) 
 

Black-box access, blind to V’s internals, is known not being the most general usage of V by S; but it’s a choice which also allows ZKPs closed under sequential 
composition (useful to preserve ZKness when we repeat IP for stronger soundness) and permits their embedding into outer protocols. More, simulation itself 
is a sufficient () but not necessary () condition for ZKness, so employing this paradigm already means missing any more comprehensive assumptions. 
 

 

Properties’ 
“scope” 

recap 
 

Soundness 

is the property of the honest Verifier not 
being fooled by ANY strategy of a Prover 

pretending a false statement: for (P*,V) 

Zero-Knowledgeness 

is the prescribed Prover capability to not leak 
knowledge to ANY Verifier (another merit of 

“blind” black-box access to V by S): for (P,V*) 
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• The Princeton Companion to Mathematics – Princeton University Press - Timothy Gowers & others (section IV.20 “Computational Complexity”) •  Tutorials on the Foundations of Cryptography – Springer - Yehuda Lindell & others (chapter 6 “How to Simulate It”) 

• Foundation of Cryptography – Cambridge University Press - Oded Goldreich (Volume I, chapters 1 and 4; all companion web pages stuff; errata) •  Geoffroy Couteau’s PhD thesis containing a very affordable overview of the field in introductory chapters 2 and 3 

• Blog posts by Matthew Green (here and here – BTW, my first meet with ZKPs), Jeremy Kun (here, here and here) and Yannik Goldgräbe (on Medium) •  A Survey of Noninteractive Zero Knowledge Proof System and Its Applications – Hindawi - Huixin Wu & Feng Wang 

• Many Q&A on crypto.stackexchange.com, especially answers by Yehuda Lindell and Geoffroy Couteau (some organized per-topic on his web pages) •  The 9th Bar-Ilan University (BIU) Winter School on Cryptography – February 18-21, 2019 (lectures’ slides and videos) 
 

 

Completeness 
regards the Prover/Verifier couple, both  
acting honestly (aka following the protocol  
prescribed by the proof): it holds for (P,V) 

 

Cheatsheet 
version 

20220621 

Honest-Verifier Zero-Knowledgeness 
Typically an exposed Prover has to be leak-resistant against any adversarial Verifier strategy, and this is a weak form of ZKness holding by definition only for 
the HONEST Verifier, so for (P,V).  Nevertheless it’s relevant because it sometimes implies IP for the same statement but with the stronger ZKness flavors:  

•    HV SZK  →  HV SZK for Arthur-Merlin IPs  →  SZK for Arthur-Merlin IPs              •    HV CZK for Arthur-Merlin IPs  →  CZK for Arthur-Merlin IPs 

 

m e s s a g e s 
e x c h a n g e 

 

(several rounds) 

    E.g.: statement = theorem 

 
axioms  …      hypothesis 

                                conclusion 
 

       logical implications 
        by derivation rules 

  n-1 times S n 

  

defined as an entity capable -outside the constraints of proof execution if needed- of 

extracting the Witness W of the Prover’s knowledge, only  P*  s.t.  P [V is convinced] > err 

taking the 
 

contrapositive 
statement is FALSE    KE never extracts W    P* P [V is convinced]  err 

challenge 

response 

commitment 

P V commitment 

response P V 

RO (          ) statement, 
commitment 

Random Oracle by pseudocode 
 

output  RO(inputs) := 
{ 
   if permanent_array[inputs] not exist { 
      permanent_array[inputs] := new random value 
   } 

   output  permanent_array[inputs] 
} 

Heuristic side: implementations use convenient (so not 
ideal) Hash functions as ROs. The security of this choice 
is commonly accepted but really still matter of research. 

https://en.wikipedia.org/wiki/Zero-knowledge_proof#The_Ali_Baba_cave
https://www.wisdom.weizmann.ac.il/~oded/foc.html
https://github.com/baro77/FoC-LaTeXized-ERRATA
https://geoffroycouteau.github.io/assets/pdf/thesis.pdf
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2017/01/21/zero-knowledge-proofs-an-illustrated-primer-part-2/
https://jeremykun.com/2016/07/05/zero-knowledge-proofs-a-primer/
https://jeremykun.com/2016/08/01/zero-knowledge-proofs-for-np/
https://jeremykun.com/2016/09/19/zero-knowledge-definitions-and-theory/
https://medium.com/magicofc/interactive-proofs-and-zero-knowledge-b32f6c8d66c3
http://dx.doi.org/10.1155/2014/560484
https://crypto.stackexchange.com/
https://crypto.stackexchange.com/users/25354/yehuda-lindell?tab=answers
https://crypto.stackexchange.com/users/31767/geoffroy-couteau?tab=answers
https://geoffroycouteau.github.io/blog/
https://cyber.biu.ac.il/event/the-9th-biu-winter-school-on-cryptography/
https://github.com/baro77
https://github.com/baro77/ZKbasicsCS

