

 RCTTypeCLSAG (Type 5) conceptual (not serialized) components

 Input (an instance of this section for each actual input UTXO)

Output UTXO “ t ”

TX Fee

Outputs Unlock Time

decoy UTXOs

offsets

actual UTXO

offset

decoy UTXOs

offsets

X stealth address

f
plain value, so to make

miners able to evaluate it

absolute time, expressed as:

• Lock disabled (0)

• Block height (< 500.000.000)

• Epoch time (≥ 500.000.000)

protocol enforces a default
relative lock of 10 blocks, too

level j=1
CLSAG pubkeys:

 X i

X …

X i = 𝜋

X …

 CLSAG

 signature

 (c 1 , r i)

 whole TX is
 signed except

 signatures’
fields

C ≜ b G + a J commitment

with:

a : moneroj in the UTXO (plain value)

b ≜ H(“commitment_mask” , H(r Vi , t))

 = H(“commitment_mask” , H(v0 R , t))

level j=2

CLSAG pubkeys:
C i - C pseudo

C …

C i = 𝜋 = b G + a J

C …

Bulletproof

Extra

C pseudo ≜ b’G + a J

output commitments’ “a”
range proofs to avoid:

 inputs outputs

5 J + 6 J = 21 J + (𝑙 -10) J
 = (21-10) J + 𝑙 J

• R transaction pubkey(s)

• encrypted payID (if any)

• . . .

NOTE: loosely structured
field, signed but not part of
consensus (⟹ wallets duties)

key images:

effective X*
 artifact C*

 (⟹ CLSAG’s
 pseudo W*)

amount
encrypted value:

 ≜ a ⊕ H(“amount” , H(r Vi , t))
 = a ⊕ H(“amount” , H(v0 R , t))

Pedersen Commitments 101

CLSAG recap & now

Secret value flow via Monero’s UTXOs

Commitments are a way to bind to a value, without
revealing it (maybe postponing the disclosure). Pedersen
ones in EC form:

C ≜ b G + a J
where:

 a : committed value

 b : random blinding factor, introducing entropy to make

 hard to get “a” by means of a rainbow table

 G : common generator point

 J : an EC point for which “j” in: J ≜ j G is unknown (DLP)

PROPERTIES

Theoretically hiding : many (a,b) couples can give the
 same commitment value C
Computationally binding : pretending to have committed
 a fake different value is equivalent to solving DLP:
 C(a2 , b2) = C(a , b) ⟹ j = (b – b2)/(a2 – a) ⟹ DLP solved

Homomorphism : C(a1 , b1) + C(a2 , b2) = C(a1+a2 , b1+b2)

• CLSAG is a sort of multisignature
schema like MLSAG, given that each
“squeezed” layer features its own
actual key and a set of decoys

• Differently from MLSAG, effective key
image protecting against double-
spending is available only for layer 1, so
each input UTXO needs a separate
CLSAG (but MLSAGs were used this way
as well, due to anonymity concerns)

• In RingCT two-levels-CLSAGs are used,
where layer 2 signature is built to be a
proof of equivalence between
committed values of the actual UTXO
and of the pseudo output commitment
Cpseudo : the equivalence subsists iff a
new specific public/private elliptic keys
pair exists, so signing the CLSAG’s 2nd
layer with that pair proves the pair
exists and so the equivalence

Monero UTXOs encode their value in two fields: the commitment C and the amount:

• amount is the way payer and payee secretly share the value: the payer calculates it from the
plain value a by the given definition; the payee can get back and verify the plain value a by just
XORing the amount with the same hash function used in its definition (two equal XORs elide
themselves). To have an hash computable by both payer and payee, transaction and view keys
are used in the same Diffie-Hellman-like way they are in stealth addresses generation

• commitments C are the way by which every network node can verify that the sum of transaction
input UTXOs values are equal to the sum of transaction output UTXOs values plus fee, all
without knowing the actual values (apart from fee’s, which is plain by design)

In RingCT schema:
• the payee verifies that output amount and C express the same value a (binding the payer/payee

exchanged value to the one validated by the network), thanks to the -already documented- way
by which amount and b are defined

• for each input, payer defines a pseudo output commitment Cpseudo bound to same value “a” of
the actual UTXO (without revealing its position in the ring, being decoupled by CLSAG signature)

• to validate the value flow, network nodes hence only have to also check balance & bulletproof:

  inputs Cpseudo =  outputs C + f J

  inputs b’ =  outputs b (imposed by the payer)

Credits
& useful
sources

• This cheatsheet relies on previous ones dealing with Monero Addresses and Ring Signatures

• Zero to Monero: 2nd Edition chapters 5, 6 and appendices A, B (even if still about MLSAG-signed
TXs, CLSAG case is straightforward once you master differences between the two Rings flavours)

• From Zero (Knowledge) to Bulletproofs (first 6 pages dealing with commitments)

inflation by cyclic group ↻ overflow

expressed, as “a” in
commitments, in atomic

units (1/1012 XMR)

Cheatsheet
version

20210604

⟹  inputs a J =  outputs a J + f J

  inputs a =  outputs a + f

• Many Monero Stack Exchange posts (e.g. “Complete extra field structure ...”)

• MoneroBlocks APIs (e.g. this call to inspect a TX – JSON parsing via jq suggested)
• Monero CLI Source Code (e.g. /src/ringct/rctTypes.h with new signature type 5),

hopefully explored via a code-inspector software (e.g. Sourcetrail)

(C i = 𝜋 – C pseudo) = (b - b’) G

being able to sign with this pub/priv

EC keys pair hence proves that C i = 𝜋
and C pseudo commit to the same “a”

usual payer/payee “exchange
trick” via transaction and view keys

Bullet
proof
check

to be continued…

https://github.com/baro77/MoneroAddressesCS
https://github.com/baro77/RingsCS
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/AdamISZ/from0k2bp
https://monero.stackexchange.com/
https://monero.stackexchange.com/questions/11888/complete-extra-field-structure-standard-interpretation
https://localmonero.co/blocks/api
https://localmonero.co/blocks/api/get_transaction_data/b0b3c299bd14f846bed560ac457b6fb8b84184c72629aad81910fc33526d4949
https://stedolan.github.io/jq/
https://github.com/monero-project/monero
https://github.com/monero-project/monero/blob/master/src/ringct/rctTypes.h
https://www.sourcetrail.com/
https://github.com/baro77
https://github.com/baro77/RctCS

