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Abstract

This bulletin describes a modification to Monero’s linkable ring signature scheme that permits dual-

key outputs as ring members. Key images are tied to both output one-time public keys in a dual,

preventing both keys in that transaction from being spent separately. This method has applications to

non-interactive refund transactions. We discuss the security implications of the scheme.

1 Introduction

The original CryptoNote protocol describes the use of a type of one-time linkable spontaneous anonymous

group (LSAG) signature. A signer chooses a so-called ring of public output keys, one of which is her own,

and fashions a signature on the message of her choice. The scheme is such that any verifier can be assured

that one of the keys in the ring is the true signer (that is, the signer knows the corresponding private key),

and that this key was not used to sign any other message with any other ring. For space efficiency, early

Monero transactions used a ring-independent one-time version of the LSAG signature scheme in [2] to direct

funds using the ring as a sender anonymity set.

To handle confidential transactions, Monero uses a variation of this scheme called multilayered linkable

spontaneous anonymous group (MLSAG) signatures. These signatures allow the signer to include vectors of

keys that include Pedersen commitments to amounts, as described in [4].

In both LSAG and MLSAG signatures, ring members (with the exception of amount commitments) are

output public keys, which are generated in Monero transactions. A given transaction typically has multiple

outputs, where the sender directs a portion of funds from a previous output to some address, and sends

the change back to herself so the transaction balances. In each case, the recipient can recover the output’s

private key and use it in a later ring signature.

In this research bulletin, we describe a modification to the construction of transaction outputs and to the

construction of ring signatures. We first describe a change whereby a sender generates a dual-key output

and a specified trigger block height that “switches” the validity between the two. Further, we describe a

modification to LSAG and MLSAG signatures, a dual linkable spontaneous anonymous group (DLSAG)

signature scheme, that allows a sender to include one of these dual-key outputs in a linkable ring signature.

When a dual, which is comprised of two separate output public keys, is the true spender, any verifier can link

two ring signatures if they were computed by either of the keys in the dual. Additionally, it is possible to

include both dual-key outputs and non-dual (that is, single) outputs as ring members in a DLSAG signature,

ensuring that signers have the largest possible set of potential ring members available to them.

This signature scheme has applications to refund transactions in Monero, which themselves are important

for certain second-layer solutions. To generate such a refund transaction, a sender generates a dual-key output
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and specifies a trigger block height. The consensus protocol could dictate that prior to the trigger height,

only one of the keys in the dual is valid as a spender; after the trigger height, only the other key in the dual

is valid. This allows the sender to reclaim the funds if they are not spent by the recipient in time.

A related version of this scheme was originally described in personal communication with Pedro Moreno-

Sanchez, and was in collaboration with pseudonymous coauthor donut. This related scheme considered the

use of commitments to block trigger heights in order to hide the actual switching height.

2 Description

Let G be an additive group of prime order `. Let Hs : {0, 1}∗ → Z` and Hp : {0, 1}∗ → G be cryptographic

hash functions. Let G ∈ G be a publicly-known group generator.

When sending funds in a Monero transaction, the sender uses the recipient’s public user address (A,B) :=

(aG, bG) ∈ G × G, along with a random nonce r, to generate a one-time output public key defined as

P := Hs(rA, t)G + B, where t is the output’s index within the transaction. The recipient uses her private

user key (a, b) and the point R := rG to recover the output private key p := Hs(aR, t) + b, which is used to

spend the funds as part of a later ring signature.

To facilitate refund transactions, we assume that a sender has generated a modified output consisting of

two one-time public keys. One such key is directed to the recipient’s address, while the other is typically

directed back to the sender. These one-time keys are called a dual, and are designated as such in the

transaction structure for later identification. The dual also has an associated trigger block height value,

with the intent that prior to the trigger, only the first one-time key is valid and can be used to spend the

associated funds, and after the trigger, only the second is valid. This has the effect of permitting the recipient

to claim funds up to a certain time, after which the sender can reclaim them.

Despite the simplicity of generating separate outputs representing the spend authority of the same funds

based on a given block height, it does not suffice to use a traditional LSAG or MLSAG ring signature that

includes one of the public keys in a dual without modifying the key image computation. Because key images

are computed for each output spent in a ring signature, it would be possible for both the pre-trigger and

post-trigger keys to be used in separate signatures undetected. To combat this, we modify the LSAG scheme

such that one-time output public keys come in pairs that share the same key image. We later discuss the

MLSAG equivalent to the construction.

2.1 Signature generation

We show the steps of generating the DLSAG signature in Table 1, allowing for any of the ring members

(including the real spender) to be either part of a dual or not. In the following notation, we assume the

spender wishes to spend funds associated to a one-time key Pπ = pπG with a ring size n, where 1 ≤ π ≤ n

is a secret index. We also assume that any key Pi that is part of a dual has a partner key Qi. The roles of

Pi and Qi in a dual are arbitrary.

Note that a DLSAG signature fully reduces to the LSAG case when all keys in the ring, including the

true spender, are not part of a dual; that is, when the signature follows only the right-hand side of the above

diagram.

The sender is free to sign with either type of key. However, she must consider a restriction on the allowed

ring members. If a potential ring member is part of a dual, she must examine the original transaction and

determine whether that key is valid at the current block height. If it is not, then she must choose the partner

key within the dual. She may wish to further avoid keys whose trigger is very close to the current block
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Dual-key Single-key

mπ ≡ Hs(txid, index)

J ≡ mπpπQπ J ≡ pπHp(Pπ)

Fπ ≡ mπQπ Fπ ≡ Hp(Pπ)

choose random u

cπ+1 ≡ Hs(txdata, uG, uFπ)

for each i 6= π

choose random si

mi ≡ Hs(txid, index)

Fi ≡ miQi Fi ≡ Hp(Pi)

ci+1 ≡ Hs(txdata, siG+ ciPi, siFi + ciJ)

sπ ≡ u− cπpπ
output (c1, {si}ni=1, J)

Table 1: DLSAG signature generation

Dual-key Single-key

for each 1 ≤ i < n

mi ≡ Hs(txid, index)

Fi ≡ miQi Fi ≡ Hp(Pi)

ci+1 ≡ Hs(txdata, siG+ ciPi, siFi + ciJ)

mn ≡ Hs(txid, index)

Fn ≡ mnQn Fn ≡ Hp(Pn)

c∗1 ≡ Hs(txdata, snG+ cnPn, snFn + cnJ)

accept only if c∗1 = c1

Table 2: DLSAG signature verification

height in case her transaction is not included in a new block quickly enough. These restrictions ensure that

adversarial verifiers of the signature cannot easily eliminate invalid ring members when trying to determine

the true spender.

Also observe that partner keys P and Q in a dual share the same key image when generated in the same

transaction, since mpQ = mqP = mpqG by construction. The inclusion of the hash m, which encodes both

the originating transaction as well as the index of the output within that transaction, prevents one of the

two recipients of a dual from burning the funds of the other by generating another dual with the same key

image that the evil recipient spends first.

2.2 Signature verification

Verification of a DLSAG proceeds similarly to that of an LSAG signature, and may be done by any observer.

When presented with a list of output public keys that are used in the ring signature, the verifier first ensures

that for any keys that are part of a dual, the chosen key is valid at the transaction’s block height. If not,

the verifier rejects the signature. The verifier also examines the key image J ; if it appears as part of any

previous valid LSAG or DLSAG signature, the signature is rejected. The verifier next completes the steps

in Table 2.
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3 Application to refund transactions

A useful application of the DLSAG scheme is to refund transactions. Some constructions of payment chan-

nels, which permit off-chain transactions between two parties that are later settled, require the use of

non-interactive refund transactions as well. Suppose that Alice wishes to send funds to Bob, but wants to

ensure that they are returned to her after an agreed-upon amount of time if Bob does not spend them. To do

so, Alice constructs a transaction where the funds destined for Bob are part of a dual: one key P is directed

to Bob, and the partner key Q is directed to her. The two keys in the dual share a range proof. A block

height h is included in the transaction data, where h is greater than the current block height of the network.

If Bob wishes to claim the funds, he must spend them prior to block height h in a transaction that uses

the key P in a DLSAG signature. Verifiers see that the transaction includes P among its ring members, and

that this output is still valid. The key image is of the form J = mpQ, which has not been used before. The

verifiers accept the transaction as valid.

However, if Bob does not claim the funds prior to block height h, Alice may claim them by spending her

key Q using a DLSAG signature. Verifiers now see that the transaction includes Q, and that this key is now

valid. The key image is J = mqP , which has not been used since Bob did not spend P . The verifiers accept

this transaction as valid.

Notice that if Bob spent P prior to height h but Alice becomes evil and wishes to spend Q after height h

(which would constitute a double spend), the process will properly fail. Verifiers will find Alice’s key image

J = mqP = mpQ to be the same as Bob’s, and will reject her transaction. This construction of a shared key

image is essential, as otherwise verifiers would not reject Alice’s evil transaction. On the other hand, if the

chain on which Bob signed the transaction is later overtaken by a chain with greater cumulative difficulty

that does not include Bob’s transaction, Alice can always claim the funds later; we consider this possibility

outside the scope of this work.

4 Multi-input extension

The DLSAG construction presented above applies only to the now defunct CryptoNote ring signature imple-

mentation. However, modern transactions require a more robust multi-key signature that can accommodate

the amount commitments used in the Monero confidential transaction model. We therefore must ensure that

there is an appropriate generalization of the DLSAG construction.

In a general MSLAG signature, each of the k inputs has an associated ring containing n public output

keys (in addition to a separate amount commitment that we do not consider here). The sender chooses

a secret index 1 ≤ π ≤ n such that she controls the public keys Pπ,j ≡ pπ,jG for 1 ≤ j ≤ k. Signature

generation proceeds according to the steps in Table 3.

As before, this reduces completely to an MLSAG signature if no ring members are part of a dual. Further,

it reduces entirely to the single-input DLSAG construction shown above in the case k = 1. Given a signature

and description of the corresponding set of public one-time output keys, signature verification follows the

steps in Table 4.

5 Security

The similarity between DLSAG signatures and the LSAG (from [2]) and MLSAG (from [4]) schemes leads

to similar proofs of security. As in the cited cases, we want to show that our signatures are unforgeable,
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Dual-key Single-key

for each 1 ≤ j ≤ k
mπ,j ≡ Hs(txid, index)

Jj ≡ mπ,jpπ,jQπ,j J ≡ pπ,jHp(Pπ,j)

Fπ,j ≡ mπ,jQπ,j Fπ,j ≡ Hp(Pπ,j)

choose random uj

cπ+1 ≡ Hs(txdata, {ujG, ujFπ,j}kj=1)

for each i 6= π, 1 ≤ j ≤ k
choose random si,j

mi,j ≡ Hs(txid, index)

Fi,j ≡ mi,jQi,j Fi,j ≡ Hp(Pi,j)

ci+1 ≡ Hs(txdata, {si,jG+ ciPi,j , si,jFi,j + ciJj}kj=1)

for each 1 ≤ j ≤ k
sπ,j ≡ uj − cπpπ,j

output (c1, {si,j}n,ki,j=1, {Jj}kj=1)

Table 3: Generalized DLSAG signature generation

Dual-key Single-key

for each 1 ≤ i < n, 1 ≤ j ≤ k
mi,j ≡ Hs(txid, index)

Fi,j ≡ mi,jQi,j Fi,j ≡ Hp(Pi,j)

ci+i ≡ Hs(txdata, {si,jG+ ciPi,j , si,jFi,j + ciJj}kj=1)

for each 1 ≤ j ≤ k
mn,j ≡ Hs(txid, index)

Fn,j ≡ mn,jQn,j Fn,j ≡ Hp(Pn,j)

c∗1 ≡ Hs(txdata, {sn,jG+ cnPn,j , sn,jFn,j + cnJj}kj=1)

accept only if c∗1 = c1

Table 4: Generalized DLSAG signature verification
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linkable, and signer-ambiguous. As the proofs are nearly identical to those presented for the original signature

schemes, we highlight only the notable differences.

5.1 Unforgeability

The LSAG/MLSAG proofs of unforgeability use the number of calls to random oracles to establish bounds

on a defined adversary’s advantage in breaking the discrete logarithm problem in recovering a signer’s

private key. These oracles represent the behavior of the hash-to-scalar function Hs, hash-to-point function

Hp, and valid signing. We observe that for a dual key image of the form J = mpqG, the value m is

uniformly distributed under the random oracle model. For a uniformly distributed value xG, the distributions

of (pG, qG, J) and (pG, qG, xG) are computationally indistinguishable under the decisional Diffie-Hellman

assumption.

The proof of unforgeability in [4] therefore holds with only minor modification, where we consider calls

to the hash-to-point random oracle for dual keys replaced by calls to a decisional Diffie-Hellman oracle.

5.2 Linkability

If an adversary is able to create two signatures signed by key vectors sharing a common true signing key,

there are two cases. If the common signing key is not part of a dual, the proof continues identically to [4].

If the common signing key is part of a dual, then we observe that

logG(siG+ ciPi) = logmiQi
(siFi + ciJ)

where i is the index of the common signing key in one of the signatures; this leads to the same conclusion

as in [4].

5.3 Signer ambiguity

We observe that the ambiguity proof in [4] does not rely on the particular structure of the base point used in

terms passed into the hash-to-scalar function Hs to generate commitments. The proof is trivially modified

to account for the Fi terms presented here.

5.4 Heuristic attacks

The DLSAG scheme provides a guarantee that, absent external information, any public key referenced in a

signature is equiprobable as the true signer. However, an adversary may use such external information to

undermine this guarantee via heuristics.

• Spend time. If Alice initiates a refund transaction to Bob and Bob does not spend the funds before

the trigger height, Alice may attempt to spend the funds shortly after this occurs. If an adversary sees

a ring containing a dual whose trigger was recently reached (or perhaps is about to be reached), the

adversary may conclude that the dual is the true spender. Moreover, one of the keys in a dual is valid

for only a small amount of time, while its partner is available in perpetuity. Such heuristics should be

considered in relation to the suspected spend patterns discussed elsewhere, as in [3, 1].

• Availability of dual outputs. Dual outputs are trivially distinguishable from single outputs. If the

number of available dual outputs in the blockchain is small relative to single outputs, they will be

chosen less frequently as ring members. An adversary may conclude that any ring containing dual

outputs is more likely to have such an output as the true spender.
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5.5 Key reuse

The current Monero transaction implementation mitigates against both double-spending and one-time key

reuse. If a user’s wallet sees multiple outputs paying to the same one-time key, it chooses the one with the

largest amount; otherwise, it risks losing a larger amount since all such outputs have the same key image.

Note that the proposed construction separates these roles; the modified key image computation considered

here will not inherently prohibit spending to the same one-time key. Alternate protocol-level rules involving

one-time key reuse, or the inclusion of a second key image and more complex signature, would be required

to retain this.

6 Concluding remarks

The signature scheme presented here offers an interesting and novel approach to non-interactive refund

transactions for use in Monero. However, implementation choices like block height commitments and re-

quirements for outputs would have an effect on transaction complexity, size, and adversarial heuristics. It

is not known whether a space-efficient key generation method could be used to describe dual-key outputs in

a more efficient way. The cost in verification complexity is likely to be unavailable without novel signature

schemes.
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