Cheatsheet
version

20210301

Generic Legacy Signature w/ EC keys

private key X ———— . public key X=X G

<+ transaction tX to be signed
Signing
Algorithm

——p Signature

Verifying Algorithm success

/(X, tx, Signature) ?

failure

Non-interactive (Fiat-Shamir) Schnorr

X2xG

x >

transaction tX to be signed

—— a ————p c2H(tx, aG)

random and called challenge because it’s
unique for known to the signer only after
each signature, choice of a (being the output of a X
otherwise one-way hash involving @), as in 0
privkey could interactive Schnorr proof where
be leaked from it’s provided by the verifier only
responser: after knowing aG (if not, in that

case the signer could lie about
knowledge of x opportunistically
reused: choosing a and r)
x=(r1-r2) / (c2-c1) +
> rLa-cx

known: x=(a-r)/c

® = C ~+ O 5 M

called response because it’s the

signer’s “answer” to previous
challenge c

= aG if signature is ok

——
H(tx, rG+cX) = ¢

/(X tx, c,r)

ulti keys (& bases) n.i

Xi > Xi2x;G;

transaction TX to be signed

v

— @ —’ CéH(txlalGll--qanGn)

please note that while all
other elements are indexed by
means of i, challenge is
unique per multi-signature (a
property someway preserved
in Rings’ structures)

-

= C ~+ 00 SN

» Fi2a;-Ccx;

it commits to n signatures at the same time

(Xi, tx, ¢, ri) ?
s H(tx, r1 Gy +cXy, ..., Ga+cX,) = ¢

Rings “magic” is about finding flavours of
previous schemas with decoys, while still retaining
just only one ACTUAL signer (from a technical
point of view: needing many X; in verifying algo
but single x in signing algo); and all without
coordination between involved keys owners

SAG

X, (-1G+c
0113"‘-“ v "‘1){0‘1

\p 2@ G,

+‘\V1’\ Xz
&
oxg random @ %
& N 2 v
PG Xn %, ")
» & d % S, (oA
s § ¢ o S Y
L P N EAN-A
T ¢ & L + EX %\
9 s 7/ = \ 3 =
- a actual) s
S signing key

index

C=H(tx, r1G+c1X1) Ca=H(tx, r;G+c,X;) ... C=H(tX, ro.1G+Ch.1Xn1) H(tx, r,G+c,X,) = ¢

J(Xi,tx,¢q, 1,

i=1,2,..,m
A
actual signing keys
index: i=m,¥j
Cre1 2 H,
o,
D N =
Sab e
ST e et
[P decor X,
- &< - Z)
E A i
s o = <
P s
=g\ P
S 2 =
< e A O T
& \“ 20N = o
. _ > =1
oo \ <
E S PR W
=l \ o\ O 1 —
= L -
s B A
"”Z“‘xto,” . " o°
!wl"'o’uw >
P —
XUy 5 z-2n
~—
i=1,2,.,n

Craa2 H(tx, .G , a,Hy(Xz.) ,

. , e

ri11G+CiaXia ,

m p 0
a.G , aal(xﬂ,l))
X;* never seen on-chain before ?

it ! . .
Xt Xl 0 cn=cn(cna(...(c2(c1)))) as previously seen in SAG and bLSAG
C1,Mij, Aj) f f

H(tX, ra,1 G+¢a Xn,1, a1 Ho(Xn 1) +Ca X1, ooy Fom G+ Co Xnm , Fnym Hp(Xnm) +Ca Xim™)

ci2 H(tX, rigmG+CiaXivm 5, FiymHp(Xig,m) + CiaXe”

rigiHp(Xig 1) +CiaXs™)

1Hp(xn~1) +c

w%\'\\"' e 7’~1)("}

\‘W‘ i (X”)

; —— %
¥ 2
i= =~
ﬂ actual -
dt'- signing key

index

¢i2 H(tx, ri.iG + iy X1, FiaHp(Xi1) # €. X7)

G 2 H(tx, G, aH,(X,))

chain before ?

X* never seen

cn=cn(cn1(...(c2(c1)))) as previously seen in SAG

I—Lﬁ

H(tX, rG +ca(tX, 1,20, Xizn) Xn, FaHp(Xn) + Ca(tX, €1,ri2n, Xiz0) X*)

s LT () traHp(X 1) & .

W2 Wr H"(sz}
\ 4
g 2 a-c, w,,
$\ \ 4
xw'x W, S
%
'\? random @ “;S,
__@' 7
N ©
S & \ W / 3\ g
& é & e % 3 3
N S PN =
. S < 3 S
: & ? i=m E2 &
s- ¥ 4 ac;ua/ \ ﬁf’ ‘:-:
Il ~ o 2
- signing key
&5 index
o
MLSAG levels aggregations 3
13
v
T
/& =
N N
5 S & 3
X" 2 X, Hp(Xz,1) & 3 <
» ;T
X
R
l:"\
Wi 2 ¥ Hi(X 1 m) Xi Wi 2 3 Hi(X 1") Xz ',x\
o

W2 w, Hp(Xn,l) = Z] Hj(le..m) X, Hp(Xn,l)

= ¥ Hi(X1m) Xj*
’

’

Cr1 2 H(tx, G, aHp(X,1)) H(tx, ri.1G +¢i.aWis , riaHp(Xia,1) + €ia W)

X1* never see
?
IX;*=0

again: cn = cn(cna(...(c2(c1))))

?
H(tx, rnG+c, Wn(Xj*: Xn,j) » I Hp(xn,l) +Cn W*(XJ*)) =G

Rings unleashed notes
SAG (Spontaneous Anonymous Group)

. the index value of actual signer (r) is random,
otherwise X= could be deduced from the order
of parameters provided in signature;

. the challenges ci are built from previous slice
elements, with dependencies depicted by the
arrows;

. final rz definition guarantees the dependencies
applying to all other cistill apply to cr+1 as well
(even if originally calculated from a), so
challenges form a closed chain, a ring: that’s
why it’s enough to provide c1 in signature (it’s
the “someway preserved” single-challenge-
per-multi-signature property)

bLSAG (Back’s Linkable SAG)

. bLSAG is a SAG extended with a key image X"
(to prevent double spending while still
mantaining anonymity, introducing linkability
of signatures) and modified challenges ci to
commit to that key image as well;

. Hp(Xx) is a carefully chosen function returning
a random point in EC basepoint-subgroup of
prime-order [, acting as generator point for
key image X" 2 xn Hp(Xr)

some BAD kex image generators

Hp(Xx) & n(X=) G
= X" 2 xzn(Xx) G = n(Xr) X1 G = n(Xx) Xr
so actual signer could be found by tries

Hp(Xz) & G2
SXi 2xr1G X2 xn2G2

= X1"- X2 = (xm1-xm2) G2

but a previous payer to both X1 and X2
can calculate the value between brackets
(thanks to Diffie-Hellman-like exchange at
the base of Stealth Addresses), so owns
heuristics to pair future Xz,1 and X=,2 usages

Hp(Xx) 2 Xr 2 X2 G

= X1"- X2" = (xm12-xn22) G

like in previous case, just a bit more algebra
and need to use G to get rid of remaining
private spending key in favour of public one

. X" = 0 check in verifying algorithm is needed
to avoid double spending due to key image
“malleability”. In challenges we have:

ci=H(..ciaX")
however X" could be substituted by a fake
X'+Ph -where Pn is a point in EC subgroup of
order h, the cofactor- if the attacker found (by
tries) all ci multiples of h; in that case:

Ci(X+Ph)=ciX+ciPh=ciX’

because any point multiplied by its subgroup
order gives zero. Luckily [(X"+Ph) # 0 because,
being prime, [cannot be a multiple of h

MLSAG (Multilayer Linkable SAG)

. MLSAG is a stack of many bLSAG, with per-
slice challenges ci(so one single challenge for
each 3D slice, commiting to all layers);

. even if it doesn’t appear to be a schema
requirement, in Monero the index value of
actual signer () is intended to be random but
shared among all layers, offering inter-levels
clustering opportunity to an attacker making
an educated guess about actual keys: that’s
why multi-input transactions (where maximum
savings could be attained) have preferred to
avoid the use of just one single MLSAG

CLSAG (Concise Linkable SAG)

. the schema currently used by Monero, it’s a
bLSAG for “pseudo keys” wx and Wi obtained
aggregating keys on MLSAG different levels; it
provides back-compatible linkability (meaning
usual key image generation) only for Xz,1;

. W doesn’t really prevent double spending by
itself but it’s built from effective X1" and Xi=1"
artifacts (that’s why they are the ones actually
used in verifying algorithm)

Credits

This cheatsheet is deeply inspired by Zero
Monero: 2nd Edition (especially chapters 2 and 3

and mentioned sources): the notation is only slightly
different and with “minor” omissions to focus on

gradual presentation of Rings’ core properties (e.g.,
no key prefixing or domain separation for hashes)

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/baro77
https://github.com/baro77/RingsCS

