
??

??

. . .

. . .

. . .

. . .

. . .

—
—

—
— i = 𝜋

actual
signing key

index

i = 1, 2, …, n

j = 1, 2, …, m

i = 1, 2, …, n

actual signing keys
index: i = 𝜋 , ⩝ j

Generic Legacy Signature w/ EC keys

private key 𝑥 public key X≜𝑥G

transaction tx to be signed

Signature

Non-interactive (Fiat-Shamir) Schnorr

𝑥 X≜𝑥G

𝛼

random and
unique for

each signature,
otherwise

privkey could
be leaked from

response r:

known: 𝑥=(𝛼-r)/c

reused:
𝑥=(r1-r2) / (c2-c1)

transaction tx to be signed

c≜H(tx, 𝛼G)

called challenge because it’s
known to the signer only after

choice of 𝛼 (being the output of a
one-way hash involving 𝛼), as in
interactive Schnorr proof where
it’s provided by the verifier only
after knowing 𝛼G (if not, in that
case the signer could lie about

knowledge of 𝑥 opportunistically
choosing 𝛼 and r)

S
i
g
n
a
t
u
r
er≜𝛼 - c𝑥

called response because it’s the
signer’s “answer” to previous

challenge c

Multi keys (& bases) n.i. Schnorr (i=1,…,n)

𝑥 i X i ≜𝑥 i G i

𝛼 i

transaction tx to be signed

c≜H(tx,𝛼1G1 , …,𝛼nGn)

please note that while all
other elements are indexed by

means of i , challenge is
unique per multi-signature (a
property someway preserved

in Rings’ structures)

S
i
g
n
a
t
u
r
er i ≜𝛼 i - c𝑥 i

Rings “magic” is about finding flavours of
previous schemas with decoys, while still retaining

just only one ACTUAL signer (from a technical
point of view: needing many X i in verifying algo

but single 𝑥 in signing algo); and all without
coordination between involved keys owners

Verifying Algorithm

𝑓 (X, tx, Signature)
success

?
failure

Signing
Algorithm

= 𝛼G if signature is ok

H(tx, r G+cX) = c?𝑓 (X, tx, c, r)

it commits to n signatures at the same time

H(tx, r1 G1 +cX1 , … , rn Gn +cXn) = c?𝑓 (X i , tx, c, ri)

Cheatsheet
version

20210301

Rings unleashed notes

SAG (Spontaneous Anonymous Group)

• the index value of actual signer (𝜋) is random,
otherwise X𝜋 could be deduced from the order
of parameters provided in signature;

• the challenges ci are built from previous slice
elements, with dependencies depicted by the
arrows;

• final r𝜋definition guarantees the dependencies
applying to all other ci still apply to c𝜋+1 as well
(even if originally calculated from 𝛼), so
challenges form a closed chain, a ring: that’s
why it’s enough to provide c1 in signature (it’s
the “someway preserved” single-challenge-
per-multi-signature property)

bLSAG (Back’s Linkable SAG)

• bLSAG is a SAG extended with a key image X*

(to prevent double spending while still
mantaining anonymity, introducing linkability
of signatures) and modified challenges ci to
commit to that key image as well;

• Hp(X𝜋) is a carefully chosen function returning
a random point in EC basepoint-subgroup of
prime-order 𝑙, acting as generator point for
key image X* ≜ 𝑥𝜋Hp(X𝜋)

• 𝑙X* = 0 check in verifying algorithm is needed
to avoid double spending due to key image
“malleability”. In challenges we have:

c i = H(… c i-1 X*)
however X* could be substituted by a fake
X*+ Ph -where Ph is a point in EC subgroup of
order h, the cofactor- if the attacker found (by
tries) all ci multiples of h; in that case:

c i (X*+ Ph) = c i X*+ c i Ph = c i X*

because any point multiplied by its subgroup
order gives zero. Luckily 𝑙 (X*+ Ph) ≠ 0 because,
being prime, 𝑙 cannot be a multiple of h

MLSAG (Multilayer Linkable SAG)

• MLSAG is a stack of many bLSAG, with per-
slice challenges ci (so one single challenge for
each 3D slice, commiting to all layers);

• even if it doesn’t appear to be a schema
requirement, in Monero the index value of
actual signer (𝜋) is intended to be random but
shared among all layers, offering inter-levels
clustering opportunity to an attacker making
an educated guess about actual keys: that’s
why multi-input transactions (where maximum
savings could be attained) have preferred to
avoid the use of just one single MLSAG

CLSAG (Concise Linkable SAG)

• the schema currently used by Monero, it’s a
bLSAG for “pseudo keys” w𝜋 and Wi obtained
aggregating keys on MLSAG different levels; it
provides back-compatible linkability (meaning
usual key image generation) only for X𝜋,1 ;

• W* doesn’t really prevent double spending by
itself but it’s built from effective X1* and X i≠1*

artifacts (that’s why they are the ones actually
used in verifying algorithm)

Credits
This cheatsheet is deeply inspired by Zero to

Monero: 2nd Edition (especially chapters 2 and 3
and mentioned sources): the notation is only slightly

different and with “minor” omissions to focus on
gradual presentation of Rings’ core properties (e.g.,
no key prefixing or domain separation for hashes)

some BAD key image generators

Hp(X𝜋) ≜ n(X𝜋) G
⟹ X* ≜ 𝑥𝜋n(X𝜋) G = n(X𝜋)𝑥𝜋G = n(X𝜋) X𝜋
so actual signer could be found by tries

Hp(X𝜋) ≜G2

⟹ X1* ≜ 𝑥𝜋,1 G2 X2* ≜ 𝑥𝜋,2 G2

⟹ X1*- X2* = (𝑥𝜋,1 -𝑥𝜋,2) G2

but a previous payer to both X 𝜋,1 and X 𝜋,2

can calculate the value between brackets
(thanks to Diffie-Hellman-like exchange at
the base of Stealth Addresses), so owns
heuristics to pair future X 𝜋,1 and X 𝜋,2 usages

Hp(X𝜋) ≜ X𝜋 ≜ 𝑥𝜋G
⟹ X1*- X2* = (𝑥𝜋,12 -𝑥𝜋,22) G
like in previous case, just a bit more algebra
and need to use G to get rid of remaining
private spending key in favour of public one

c2=H(tx, r1G+c1X1) c3=H(tx, r2G+c2X2) ... cn=H(tx, rn-1G+cn-1Xn-1) H(tx, rnG+cnXn) = c1

𝑓 (X i , tx, c1 , ri)

?

SAG

??

??

. . .

. . .

. . .

. . .

—
—

—
— i = 𝜋

actual
signing key

index

i = 1, 2, …, n

. . .

. . .

—
——

—

c𝜋+1 ≜ H(tx ,𝛼G ,𝛼Hp(X𝜋)) ci ≜ H(tx , ri-1G + ci-1Xi-1 , ri-1Hp(Xi-1) + ci-1X*)

bLSAG

?
𝑓 (X i , tx,
c1 , ri , X*)

MLSAG

X* never seen on-chain before ?

𝑙 X* = 0 cn = cn(cn-1(…(c2(c1)))) as previously seen in SAG

H(tx, rnG + cn(tx, c1 ,r i ≠ n , X i ≠ n) Xn , rnHp(Xn) + cn(tx, c1 ,r i ≠ n , X i ≠ n) X*) = c1
?

𝑓 (X i , tx,
c1 , ri , X*)

?

c𝜋+1 ≜ H(tx , 𝛼mG , 𝛼mHp(X𝜋,m) ,
… , ... ,
𝛼1G , 𝛼1Hp(X𝜋,1))

ci ≜ H(tx , ri-1,mG + ci-1Xi-1,m , ri-1,mHp(Xi-1,m) + ci-1Xm* ,
… , … ,

ri-1,1G + ci-1Xi-1,1 , ri-1,1Hp(Xi-1,1) + ci-1X1*)

X j* never seen on-chain before ?

𝑙 X j* = 0 cn = cn(cn-1(…(c2(c1)))) as previously seen in SAG and bLSAG

H(tx, rn,1 G + cn Xn,1 , rn,1 Hp(Xn,1) + cn X1* , ... , rn,m G + cn Xn,m , rn,m Hp(Xn,m) + cn Xm*) = c1

?

𝑓 (X i,j , tx,
c1 , ri,j , X j*)

?

c𝜋+1 ≜ H(tx ,𝛼G ,𝛼Hp(X𝜋,1)) ci ≜ H(tx , ri-1G + ci-1Wi-1 , ri-1Hp(Xi-1,1) + ci-1W*)

??

??

. . .

. . .

. . .

. . .

—
—

—
—

. . .

—
——

—

. . .

i = 𝜋
actual

signing key
index

i = 1, 2, …, n

X1* never seen on-chain before ?

𝑙 X1* = 0 again: cn = cn(cn-1(…(c2(c1))))

H(tx, rn G + cn Wn(X j*, Xn,j) , rn Hp(Xn,1) + cn W*(X j*)) = c1

?

𝑓 (X i,j , tx,
c1 , ri , X j*)

?

CLSAG

X j* ≜ 𝑥𝜋,j Hp(X𝜋,1)

Wi ≜⅀jHj(X1…m)X i,j w𝜋 ≜⅀jHj(X1…m)𝑥𝜋,j

W*≜ w𝜋 Hp(X𝜋,1) = ⅀j Hj(X1…m) 𝑥𝜋,j Hp(X𝜋,1)

= ⅀j Hj(X1…m) X j*

MLSAG levels aggregations

j = 1 : effective key image
j ≠ 1 : artifacts

const ⩝ j

* *

*

*“collision-like hard”
fake W* forgery

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/baro77
https://github.com/baro77/RingsCS

