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Generic Legacy Signature w/ EC keys
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please note that while all
other elements are indexed by
means of i, challenge is
unique per multi-signature (a
property someway preserved
in Rings’ structures)
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it commits to n signatures at the same time

(Xi, tx, ¢, ri) ?
s H(tx, r1 Gy +cXy, ..., Ga+cX,) = ¢

Rings “magic” is about finding flavours of
previous schemas with decoys, while still retaining
just only one ACTUAL signer (from a technical
point of view: needing many X; in verifying algo
but single x in signing algo); and all without
coordination between involved keys owners
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Rings unleashed notes
SAG (Spontaneous Anonymous Group)

. the index value of actual signer (r) is random,
otherwise X= could be deduced from the order
of parameters provided in signature;

. the challenges ci are built from previous slice
elements, with dependencies depicted by the
arrows;

. final rz definition guarantees the dependencies
applying to all other cistill apply to cr+1 as well
(even if originally calculated from a), so
challenges form a closed chain, a ring: that’s
why it’s enough to provide c1 in signature (it’s
the “someway preserved” single-challenge-
per-multi-signature property)

bLSAG (Back’s Linkable SAG)

. bLSAG is a SAG extended with a key image X"
(to prevent double spending while still
mantaining anonymity, introducing linkability
of signatures) and modified challenges ci to
commit to that key image as well;

. Hp(Xx) is a carefully chosen function returning
a random point in EC basepoint-subgroup of
prime-order [, acting as generator point for
key image X" 2 xn Hp(Xr)

some BAD kex image generators

Hp(Xx) & n(X=) G
= X" 2 xzn(Xx) G = n(Xr) X1 G = n(Xx) Xr
so actual signer could be found by tries

Hp(Xz) & G2
SXi 2xr1G X2 xn2G2

= X1"- X2 = (xm1-xm2) G2

but a previous payer to both X1 and X2
can calculate the value between brackets
(thanks to Diffie-Hellman-like exchange at
the base of Stealth Addresses), so owns
heuristics to pair future Xz,1 and X=,2 usages

Hp(Xx) 2 Xr 2 X2 G

= X1"- X2" = (xm12-xn22) G

like in previous case, just a bit more algebra
and need to use G to get rid of remaining
private spending key in favour of public one

. X" = 0 check in verifying algorithm is needed
to avoid double spending due to key image
“malleability”. In challenges we have:

ci=H(..ciaX")
however X" could be substituted by a fake
X'+Ph -where Pn is a point in EC subgroup of
order h, the cofactor- if the attacker found (by
tries) all ci multiples of h; in that case:

Ci(X+Ph)=ciX+ciPh=ciX’

because any point multiplied by its subgroup
order gives zero. Luckily [ (X"+Ph) # 0 because,
being prime, [ cannot be a multiple of h

MLSAG (Multilayer Linkable SAG)

. MLSAG is a stack of many bLSAG, with per-
slice challenges ci(so one single challenge for
each 3D slice, commiting to all layers);

. even if it doesn’t appear to be a schema
requirement, in Monero the index value of
actual signer () is intended to be random but
shared among all layers, offering inter-levels
clustering opportunity to an attacker making
an educated guess about actual keys: that’s
why multi-input transactions (where maximum
savings could be attained) have preferred to
avoid the use of just one single MLSAG

CLSAG (Concise Linkable SAG)

. the schema currently used by Monero, it’s a
bLSAG for “pseudo keys” wx and Wi obtained
aggregating keys on MLSAG different levels; it
provides back-compatible linkability (meaning
usual key image generation) only for Xz,1;

. W doesn’t really prevent double spending by
itself but it’s built from effective X1" and Xi=1"
artifacts (that’s why they are the ones actually
used in verifying algorithm)
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This cheatsheet is deeply inspired by Zero
Monero: 2nd Edition (especially chapters 2 and 3

and mentioned sources): the notation is only slightly
different and with “minor” omissions to focus on

gradual presentation of Rings’ core properties (e.g.,
no key prefixing or domain separation for hashes)
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